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A class of problems of natural convection in tilted boxes is studied by analytical and 
numerical methods. The convection is assumed to be driven by uniform fluxes of 
heat (or mass) at two opposing walls, the remaining walls being perfect insulators. 
Disregarding end-region effects, an exact analytical solution is derived for the state 
which occurs after initial transients have decayed. This state is steady except for 
a spatially uniform, linear growth in the temperature (or the species concentration) 
which occurs whenever the fluxes are not equal. It is characterized by a uni-directional 
flow, a linear stratification and wall-to-wall temperature profiles which, except for 
the difference in absolute values due to the stratification, are the same at each cross- 
section. The mathematical problem is in essence nonlinear and multiple solutions are 
found in some parameter regions. The BCnard limit of horizontal orientation and 
heating from below is found to give a first bifurcation for which the steady states both 
before and after the bifurcation are obtained analytically. For a tilted Bhard-type 
problem, a steady state with top-heavy stratification is found to exist and compete with 
a more natural solution. The analytical solution is verified using numerical simulations 
and a known approximate solution for a vertical enclosure at high Rayleigh numbers. 
The presented solution admits arbitrary Rayleigh numbers, inclination angles and 
heat fluxes. Some restrictions on its validity are discussed in the paper. 

1. Introduction 
Natural convection in enclosures is and has long been a subject of intense research. 

It occurs in everyday life, for instance in double-glazed windows and car batteries, as 
well as in industrial processes such as crystal growth and electrochemical metal refin- 
ing. The density differences which, when acted upon by gravity, cause the convection 
are generally due to differences in either temperature or chemical composition (or both). 

In the following very limited review of the literature, we will focus on rectangular 
enclosures where the flow is driven by either prescribed heat/mass fluxes or prescribed 
temperatures/concentrations at two opposing sides. Unless otherwise stated, two- 
dimensional geometries are considered. 

One much studied case, generally referred to as Rayleigh-Binard convection, is 
that of a horizontal enclosure with its lower wall maintained at a higher temperature 
than its upper. For this case a solution without convection exists, but it is only 
stable for low Rayleigh numbers. Assuming infinite length and depth, the critical 
Rayleigh number based on the height becomes 1708. At this value, convection starts 
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in the form of horizontal rolls. If the heat flux, rather than the temperature itself, 
is prescribed at the boundaries, the critical Rayleigh number goes down to 720, as 
shown by Sparrow, Goldstein & Jonsson (1963) who obtained stability results for a 
variety of boundary conditions. 

Taking all the four sidewalls into account, Davis (1967) shows that smaller length 
and depth of the box gives a higher critical Rayleigh number and that the rolls orient 
themselves with their axes of rotation parallel to the shorter of the two dimensions. 

On increasing the Rayleigh number, a complex scenario of Prandtl-number- 
dependent transitions occurs before the flow eventually becomes turbulent. The 
review by Busse (1978) gives detailed information about this, whereas the work by 
Stella, Guj & Leonardi (1993) can serve as an introduction to more recent work. An 
extensive review of the research on Rayleigh-Binard convection as a whole can be 
found in Drazin & Reid (1981, chap. 2). 

Another fundamental case is that of a vertical enclosure with its sidewalls main- 
tained at different temperatures. A theoretical treatment of this case was first done 
by Batchelor (1954), who made a perturbation series solution for the conduction- 
dominated regime. A heat transfer estimate for the convection-dominated regime was 
also arrived at, assuming an isothermal interior. However, when experimental data 
became available they gave contrary evidence of a stratified inner region. 

Elder (1965) made extensive measurements of temperature and velocity in a tall box, 
again with differential heating. He also presented an analytical solution, originally 
due to Prandtl (1952) in his model for the wind due to a warm mountain slope, based 
on the assumption of uni-directional flow and therefore valid only near mid-height, as 
explained by him. The solution contains a linear stratification constant, which could 
not be determined in a straightforward way. 

Subsequently, Gill (1966) extended Elder’s solution to take the varying boundary- 
layer thickness into account. However, Gill’s solution also has a constant whose 
determination has been questioned in later works. For determining the constant in 
Gill’s solution, Bejan (1979) used the approximate argument that there should be no 
net energy transport in horizontal cross-sections near the ends. 

For the case of constant heat flux, treated by Kimura & Bejan (1984), the above 
argument becomes applicable at arbitrary cross-sections and, when applied to Elder’s 
original solution, actually gives an exact solution of the boundary-layer equations in 
the interior. The solution thus obtained was verified using a numerical simulation. 

Since it takes a long time to reach the steady state, time-dependent problems are 
also of great practical interest. Scaling arguments and numerical simulations by 
Patterson & Imberger (1980) suggest that for high Rayleigh numbers the steady state 
is approached via damped internal waves. In a numerical simulation Schladow (1990) 
detected both the internal waves and two other types of oscillatory motion which 
were found to be due to two different types of boundary-layer instabilities. In both 
the above studies, constant wall temperatures were prescribed - although the choice 
of boundary conditions appears not to be crucial for the phenomena as such. 

Recently, Bark, Alavyoon, & Dahlkild (1992) extended the solution of Kimura & 
Bejan (1984) to encompass the case of constant fluxes which are not equal. Such 
situations occur frequently in electrochemical systems such as lead-acid batteries. 
In the same paper an equation for the development of stratification with time was 
developed. Bark et al. confirmed their findings using numerical and experimental data. 

Turning our attention to tilted enclosures, Hart (1971) made a linear stability 
analysis of the flow in an inclined box with constant-temperature boundary conditions. 
Stream- and spanwise perturbations were separately considered and added to a 
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parallel flow solution similar to that of Elder (1965), which had been extended by 
abandoning the boundary-layer assumption. Both the analysis and experiments 
presented in Hart (1971) show the existence of two different instability mechanisms, 
effective in different parameter regions : longitudinal rolls and transverse travelling 
waves. The analytical results were in fair agreement with the experiments considering 
that the base solution used did not fulfil the constant-temperature boundary conditions 
imposed in the experiment - an approximation that Hart was well aware of. Had it 
not been for the zero temperature fluctuation which was imposed on the perturbations 
and the fitting of the stratification to experimental data, Hart's results would have 
been directly applicable to the present analysis. 

An analysis which is very similar to the one to be presented here is that of Sen, 
Vasseur & Robillard (1987), who considered an inclined porous layer with a prescribed 
heat flux through it (no heat accumulation). We shall have reason to return to their 
work during the course of our analysis. 

In the following, we will treat the case of an inclined tall enclosure with constant, 
generally different, heat fluxes prescribed at the two sidewalls. Both arbitrary Rayleigh 
numbers and an arbitrary angle of inclination will be allowed for. In spite of its 
rather fundamental nature this problem appears not to have been considered before. 
We will look for a solution using a simple ansatz with a linear stratification. Working 
with real variables, we get two different families of solutions depending on the sign of 
the stratification. The stratification is finally determined using the energy argument 
of Bejan (1979), whose correctness we ascertain by deriving it from the equations 
and boundary conditions. We obtain a transcendental equation for the stratification 
which we solve numerically. Some approximate explicit solutions are also derived 
for the limits of low and high Rayleigh numbers. For the special case of horizontal 
orientation the original ansatz breaks down - however the problem becomes simpler 
and an explicit solution is found. A few numerical results are also presented, mainly 
to check the correctness of the analytical solution. 

2. Problem formulation 
In the following, the two problems depicted in figures 1 (a)  and (b )  will be treated 

simultaneously. Problem (a )  is one of heat transfer whereas problem (b )  is an 
electrochemical problem concerned with mass transfer in a binary electrolyte, i.e. 
one that contains two different ion species, one positive and the other negative. 
Even though the transport of ion species inside an electrolyte is not only diffusive- 
convective but also has the additional transport mechanism of migration due to an 
electric field, there is a condition of electroneutrality which can be used to write 
the two concentration equations for the two different species as one single equation 
having the same form as if the transport occurred solely by diffusion and convection 
(Newman 1991). To map the two problems onto one and at the same time get rid of 
unnecessary parameters, the following non-dimensional variables are introduced : 
for the heat transfer case 

(2.11) 2 1/2 where A T  = + A2T) ; 
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FIGURE 1. Geometry and coordinate system. 

for the mass transfer case: 

cl) - c VU* P* 
BcAch3g’ = BcAcph2g ’ 

, u =  t’D X. y = -  Y’ e=--.- t =  - 
h ’  ACh 

h 2 ,  x = -  h ’  
( 2 . 2 ~ - f )  

(2.21) 2 112 where Ac = u;c + * 

Here, PT and PC are volumetric expansion coefficients (in m3 K-’ and m3 mol-’, 
respectively). The remaining quantities appearing in the right-hand sides, which are 
not explained by figure 1, are in a standard notation. To get the same notation for 
both problems we have used P r  rather than Sc for the Schmidt number in the mass 
transfer case. Note also the sign shift in the definition of 8. 

Using the Boussinesq assumption and also assuming constant material properties 
the non-dimensional system of equations for the quantities defined above is 

(?.! + Ra (urn V)u = -Vp + V2u - ee,, (2.3) P r  at 

v - u  = 0, 

ae 
- + Rau V8 = ~ 2 8 ,  
at 

(2.6a, b)  
ae 
aY 

ae 
aY 
ae 
ax 

a t y = - 1 :  u = 0, - = A , ;  

a t y = + l :  u = 0, - = Az; 

a t x = f A :  u = 0, - =o. 

(2.7a, b)  

(2.8a, b )  
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Whenever desired, the two fluxes can be described using only one parameter y: 

= cosy, A2 = siny. (2.9a, b) 

The direction of gravity eg = (-cosa,-sina). The full problem thus has five 
different non-dimensional parameters : the Rayleigh number Ra, the Prandtl number 
P r ,  the aspect ratio A, the inclination angle a, and the heating parameter y. 

3. Solution procedure 
3.1. Ansatz 

From the semi-infinite heated-slope problem treated by Prandtl (1952) we have seen 
how a linearly stratified temperature field far from a wall, together with suitable 
boundary conditions on the wall, can cause a structure with non-developing boundary 
layers. For a flow confined between two parallel walls, the same balance in the 
equations gives exact solutions with parallel flow (Hart 1971). That this works even 
for low Rayleigh numbers is noteworthy (but perhaps not so surprising). Instead of 
prescribing the stratification, as those authors did, one can prescribe the heat flux 
on the walls and calculate the stratification, as was done by Kimura & Bejan (1984). 
With non-equal heat fluxes Bark et al. (1992) found essentially the same structure, 
only with the addition of a spatially uniform, time-linear growth in temperature. It is 
thus with some confidence that we can make the following ansatz in searching for a 
solution valid for large times sufficiently far from the ends x = +A:  

u = U(Y) ex, (3.1) 
8 =  f ( y ) + T t + S r ,  wherec=xcosa+ysina,  (3.2) 

(3.3) 

Naturally, this ansatz does not (and need not) satisfy the boundary conditions at 
x = +A. We will continue under the tacit assumption that matching end-region 
solutions exist, and refer the reader to the Appendix for an example of such a 
solution and a general discussion of the end regions. 

Inserting the ansatz into the equations one easily shows that the reduced pressure 
P must have a constant gradient in the x-direction. Defining G = a P / d x  we obtain 
the following ordinary differential equations : 

p = ~ ( x , y ) + r t t  + $c2. 

d2f 
dY 
- - RaSucosa = r ,  

with the boundary conditions 

u(*l) = 0, df -(-1) = 11 - S sina, 
dY 

-(l)=Az-Ssina. df 
dY 

(3.6~-c) 

Had we instead followed Sen et al. (1987) in defining the stratification S as the 
derivative of the temperature in the x-direction, there would have been no stratification 
term in the boundary conditions. Instead, an additional term would have appeared 
in (3.4) since it would no longer have been possible to write the buoyancy due to S 
as a gradient and include it in the pressure. It turns out that the solutions which 
have boundary-layer character also have an interior which is linearly stratified in 
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FIGURE 2. Control volume used in deriving integral conditions. 

the direction of gravity, which supports our definition. Close to the bottom-heated, 
horizontal case, however, the physics of the problem is entirely different and the 
definition of Sen et al. works better in that as a -+ .n/2 their stratification parameter 
remains finite, whereas our S goes to infinity (with S coscl remaining finite). 

3.2. Closing the problem 

Because of the unknown constants G, r ,  and S the system is still not closed. We will 
now make indirect use of the boundary conditions at the end regions to determine 
all the constants. First, we integrate the mass continuity equation across the control 
volume in figure 2 and use Gauss' theorem to write the result as a line integral around 
the boundary: 

O = J '  JxQV.u dxdy = 
-1 -A 

(3.7) 

Even though one could have guessed this result right away, it seems that the technique 
used provides a formally correct way to literally go around the difficult region and 
obtain useful information. Integrating (3.5) from -1 to 1, the above condition on u 
directly gives 

Next, we derive the energy flux condition of Bejan (1979) by proceeding in the same 
manner with the temperature equation: 

(3.9) 

(Rau 9 - VB).nds. f 1 

J Jxo 
dxdy = -1 

-A  at 
dx dy + O =  J' -1 Jxods+v*( ,aue-ve)  -A  at 

With r as above this simplifies to 

(3.10) 
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which is equivalent to the condition suggested by Bejan and which, once everything 
else is known, will determine the stratification, S .  For less idealized boundary 
conditions, in which the local heat flux depends on the local temperature, (3.10) 
would be modified to also contain an integral in x over the difference in wall heat 
flux [iM/iJy]:f~l and an integral in y over the heat flux through the end surface at 

Letting xo = A in (3.9) we also obtain the mean temperature in the box as a 
function of time: eman = t(A2 - Al ) /2 ,  which is valid even for small times when the 
asymptotic behaviour has not yet been approached. Combining this with the ansatz 
gives the following condition on f :  

x = -A. 

1 

fdY =o,  (3.11) 

from which, at a later stage, G can be determined. The solutions for f and u depend 
on whether S is positive or negative. One common feature of the two cases is that if 
f and u are split into odd and even parts, the solutions take the following form: 

11 

f = fo  + f ~  = Fo -Ssina) + F E  (v), (3.12) 

where the functions Fo, FE,  UO, and UE depend only on y and the parameter com- 
bination RaS cos'a. Using this partition, the equation for determining S can be 
written 

( 3 . 1 4 ~ )  
where 

We note that the aspect ratio, A, does not enter the problem (other than in the 
bounds for the x-coordinate). This is a fortunate side-effect of the assumption of 
uniform heat/mass fluxes which, from the discussion following (3.10), is not to be 
expected for cases with non-uniform fluxes. 

Finally, it should be noted that, even though (3.4) and (3.5) can be solved as a 
linear system in u and f ,  we are still solving a nonlinear problem because S depends 
on u and f .  This means that there is no guarantee that there is a unique solution and 
indeed we shall see that there are cases with multiple solutions. 

3.3. Solution for a fixed positive S (natural stratification) 
Define 

= ( R ~ s ~ c o s ~ ~ ) "  
(the positive real root only), (3.15) 
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FIGURE 3. The functions Fo(y )  and Uo(y). 

n h r  . 1 0.03 I I \ 

1 
-u.u 

-1 0 0 1 
-0.03 

-1 
Y Y 

FIGURE 4. The functions F E ( Y )  and UE(JJ).  

then 

sinh py cos by cosh py sin py 
coshpsinfi + sinhpcosfl 
sinh by cos by cosh fly sin p y  - 
sinh p cos /? cosh @ sin /? uo = 

(3.17) 

(3.18) 

1' sinhpy sinpy d + 2p coshpy cospy a - 2p 
coshpcosp a + d  sinhpsinp a + d  

cosh By cos py d + 2p sinh By sin py - - - 1 } .  a - 2p 

ac - bd - 2P(b + c )  ~- 
2P (a  + 4 + FE = 282 

(3.19) 

(3.20) uE=v l {  coshjcosp a + d  

(The odd functions Fo and Uo for S > 0 previously appeared in the work by 
Hart (1971).) Figures 3 and 4 show the behaviour of these four functions for some 
different values of b. For p smaller than about 1 (even) or 0.5 (odd) all curves lie 
on top of each other having no p dependence. When f l  is increased beyond 1 the 
curves rapidly move away from the small-/? limit and acquire more of a boundary- 
layer character, the boundary-layer thickness being of the order of magnitude 1/p. 

l {  

sinhpsinp a + d  
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Amplitudes are found to decrease as P increases. The curves marked B = ... are 
related to the solution for negative S. 

The integrals in the expression for determining S become 

1 ac - bd 
I' = 

2P4(b+c) { 7- 
z 2 = w { 1 -  1 ac - bd 

(3.21) 

(3.22) 

ac-bd-2P (b+c) - (~-2P)(d+2P)(4p+sinh 2p cos 2P+cosh 2p sin 2p) 
1 3  = - P (a + dI2 sinh 28 sin 28 

sinh 2p cos 2P - cosh 2p sin 2p 
8P ( a  + dI2 } C3.23) 

3.4. Solution for a fixed negative S (unnatural stratijication) 

Define 

(the positive real root only), (3.24) I f 4  B = (-Ra s cos2 a) 

p = tanB, q = tanhB, Y = cotB, s = cothB, (3.25~-d) 

then 

(3.26) 

(3.27) 

cos By cosh By 
FE = ( 4  - B )  + 

cos By  cosh By 
UE = (4  - B )  - a ( P -  B )  + P  - 4) * (3.29) 

Although these functions may seem a bit simpler than the ones for the naturally 
stratified case, their behaviour turns out to be more complex. Figures 3 and 4 indicate 
that for small B the curves approach the same limiting curves as for the case of 
positive S and p 3 0. As B is increased, the curves move away from the small-B 
limit, now in the opposite direction from the case of positive S. At B = 2.365 for 
the odd functions and B = 3.927 for the even ones a singularity occurs. Passing the 
singularity the curves flip over at infinite amplitude. As B is increased further, new 
singularities occur, but to keep the graphs readable we have chosen not to include 
these. Between the singular points the amplitude decreases with B. In contrast to 
the case of stable stratification, boundary layers do not develop. Instead, the curves 
become more and more wavy, their wavenumber being of order B. The singularities 
are found to occur at tanh B = - tan B and at tanh B = tan B for the odd and even 
functions respectively. 

The integrals in the expression for determining S become 
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FIGURE 5. The functions 11, 12  and I 3  appearing in the equation for S. 

1 2B - sin 2B 2B - sinh 2B + " = B4(r + sI2 { 2B sin2 B 2B sinh2 B 

1 2  = 
B4(r + s) 

(3.30) 

(3.31) 

2B + sin 2B) ( p  - B)2(2B + sinh 2B) 
4B cosh2 B 

- 
4B cos2 B 

I 3  = 

3.5. Determination of S 
For the general case, it is not possible to obtain a closed form expression for S ,  owing 
to the algebraic complexity of (3.14). Studying the functions 11, 1 2 ,  and 13, which 
appear in (3.14) and are plotted in figure 5, we shall first make some observations 
concerning the existence of solutions before we eventually solve (3.14) numerically. 
For negative S all the I have singular points and the only conclusion that comes 
easily is that for the special case a = 0 there are no negative solutions. For positive 
S, however, all the 1 are positive and well behaved and a more general conclusion 
can be drawn. Expressing S in terms of /3 and studying the limits /3 -+ 0 and /3 -+ 00 

we can show that, for all a, y, and Ra, the left-hand side of (3.14) starts at 1/45 and 
goes to a negative number proportional to -p4 as /3 goes from zero to infinity. Since 
all the functions involved are continuous, there must be at least one positive solution 
S to equation (3.14). In fact, in our numerical solutions of (3.14) exactly one positive 
solution was found for all parameter combinations tested. 

We have so far allowed for arbitrary values of a and y. However, because a 
number of symmetries are present we need to solve S only for the parameter ranges 
0 < a < 90" and 45" < y < 225". The following symmetries of the unknown function 
S(Ra,a,y) can then be used: 

S(Ra, a + n x 360", y + m x 360") = S(Ra, a, y), 
S(Ra, 180" - a, y) = S(Ra, a, y), 

m, n integers, (3.33) 
(3.34) 
(3.35) S(RU, -a, y) = S(RU, a, y + 180"), 

S(Ra, a - 180", y )  = S(Ru, a, y + 18OO), 
S(Ra, a, y = 45" + (6) = S(Ra, a, y = 45" - (p), 

(3.36) 
(p real. (3.37) 
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The symmetries (3.33)-(3.36) are purely geometric and as such quite trivial: they just 
describe different ways of specifying the same physical situation. On the other hand, 
the last symmetry (3.37), which can be shown from inspection of (3.14), does have a 
physical implication. It means that, as far as the solution of S is concerned, the fluxes 
11 and 1 2  are interchangeable. For instance, supplying a certain amount of heat at 
the topmost boundary gives the same stratification as removing the same amount of 
heat at the lower boundary. 

To obtain curves S(Ra) for different values of a and y ,  assuming no a priori 
knowledge of the number of roots, we have solved S graphically by repeatedly plotting 
the contour for the left-hand side of (3.14)= 0 in the ( S ,  Ra)-plane. Whenever more 
accurate solutions were needed, they were found using the van Wijngaarden-Dekker- 
Brent method (Brent 1973), implemented in Press et al. (1986). 

3.6. Explicit solution for the case of horizontal orientation 
When a = n/2, the original ansatz breaks down because it no longer allows 19 to 
depend on x. As a + n/2, our numerical solutions of the stratification equation 
indicate that, for bottom heating (11 + 12 < 0), S goes to infinity in such a way 
that S cos a remains finite. The term S sina then goes to infinity, but cancels with a 
corresponding part in the function f(y). This leads us to an alternative ansatz with a 
linear stratification S,  in the x-direction rather than in the direction of gravity. The 
case becomes quite simple, because the buoyancy term vanishes, and the complete 
solution is found to be:? 

s x  3 u = - (y - y). 
6 

(3.39) 

The condition (3.9) still holds and, with the above expressions inserted, gives a third- 
order polynomial equation for s, which is easy to solve because an S,  can be factored 
out. Thus, S, = 0 is always one solution, corresponding to pure conduction. For 
11 + 1 2  < 0 and Ra > -90/(11 + 12) there are also two other solutions: 

j 

2Ra S,  = *--[-7 (90 + Ra(& + 11))]1’2 (3.40) 

From an intuitive comparison with the buckling beam problem one would expect 
that these two solutions are both stable, whereas the S, = 0 solution is only stable 
when the other two do not exist. This is also what is indicated by numerical 
simulations that we have made with a two-dimensional code. For a porous medium 
Sen et al. (1987) found the same type of branching, also did two-dimensional 
simulations and drew the same conclusions about stability of the different branches. 
However, as Ra is increased further from the first bifurcation point we would expect 
secondary instabilities to occur. For the porous medium it was found by Kimura, 
Vynnycky & Alavyoon (1995) that a three-dimensional secondary instability nor- 
mally sets in at a lower Ra than that of a competing two-dimensional instability. 
Naturally a three-dimensional instability, if present, would not be captured in our 
simulations. 

Finally, we note that when our Ra is converted to a Rayleigh number based on 2h 

t The important special case 11 = 12 has been solved independently by Dr F. Alavyoon. 
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and A ,  its critical value becomes 720 for the case of equal fluxes, in perfect agreement 
with the stability analysis of Sparrow et al. (1963). 

4. Numerical solution method 
In order to ascertain the correctness of the analytical solution presented a few 

numerical simulations were made. These simulations solved the unsteady two- 
dimensional problem in the creeping flow approximation, i.e. neglecting the left-hand 
side of the momentum equation (2.3), starting from rest. A slightly modified version 
of a Fortran code originally written for a double-diffusive problem (Alavyoon 1994) 
was used for the calculations. The numerical scheme is second-order accurate in 
space and first-order in time. The diffusion terms are calculated implicitly whereas 
the convection terms are taken explicitly. This leads to a stability restriction on the 
time step which becomes severe for high Rayleigh numbers. The variables solved for 
are stream function and temperature. A description of the original code can be found 
in Alavyoon (1994). 

A uniform grid of 25 interior points in y and 75 in x was used for the cases 
presented. These calculations were made with the aspect ratio A = 5.  Since the 
largest relevant time scale seems to be that of diffusion in the x-direction, which takes 
place on a dimensionless time scale o f t  - A2, we would expect that initial transients 
have died out when tQ25. To be on the safe side, calculations were continued until 
t = 300. 

Also, after the first submission of this paper, the authors gained access to a 
commercial flow prediction code, CFDS-FLOW3Dt, which we have used in the 
Appendix to simulate a case with high Ra, moderate P r ,  and A = 1. For this case a 
non-uniform 40 by 40 grid was used to resolve the boundary layers. A scheme which 
is second order in space and first order in time was employed. 

5. Results 
In the following, some analytical results are given, mainly in the form of S(Ra;a )  

curves. Five different values of the heating parameter y have been considered and are 
presented as five different cases. For one special case ( y  = 225",a = 75", Ra = 3000) 
numerical results are also given. 

5.1. Case with equal heat fluxes, topmost side heated: y = 45" 
With y = 45", one has ill = = 1/$ from the definition (2.9a,b) and consequently 
no secular heating. With a between 0 and 90" the heated side is above the cooled 
side. For a = 90" there will be no convection, owing to hydrostatic stability, so one 
can expect a rather undramatic scenario as the box is laid down. 

Figure 6 shows how the stratification varies with the Rayleigh number for different 
angles of inclination. There is only a single, positive, solution for S. For CI = 0, the non- 
dimensional stratification goes to zero for high Rayleigh numbers, in agreement with 
the results of Bark et al. (1992). If the enclosure is tilted however, the stratification 
instead approaches constant values which depend on the angle of inclination. 

The situation for a close to 90" is that, for high Rayleigh numbers, the stratification, 
as we defined it, carries most of the heat flux whereas for low Rayleigh numbers the 
heat flux is mainly contained in the function f .  

t Trademark of AEA Technology, CFDS, 8.19 Harwell, Didcot, Oxfordshire OX11 ORA, UK. 
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FIGURE 6.  Stratification as function of Rayleigh number; y = 45". 
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FIGURE 7. Some temperature and velocity profiles. ( a )  Ra = 106,a = 0 ;  (b )  Ra = lo6,@ = 45"; 
( c )  Ra = 10, M: = 45". For all cases y = 45". 

Temperature and velocity profiles for three selected cases are shown in figure 7. For 
a = 0, Ra = lo6 both the temperature and the velocity profile have boundary layers. 
The thickness of the temperature boundary layer is the same as that of the velocity 
boundary layer, as is usually the case in a stratified environment. For the second 
case, the box has been inclined to a = 45", with Ra fixed at lo6. The corresponding 
temperature profile reveals that the stratification serves to conduct a significant part 
of the heat directly from plate to plate. There are still boundary layers near the walls 
indicating that transport by convection is also important. For the third case we keep 
a at 45" and change Ra to 10. This gives a linear temperature profile, indicating that 
heat/mass transport occurs mainly by conduction. This fact is seemingly contradicted 
by the fact that the velocity u is higher than for the previous cases; but when u is 
multiplied by Ra S cos a to form the convection term in the temperature equation 
(3.5), that term becomes negligible. 
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FIGURE 8(a-c). For caption see facing page. 
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( c )  y = 18@, ( d )  y = 225". 
FIGURE 8. Stratification as function of Rayleigh number: (a) y = go", ( b )  y = 135", 

5.2. Cases with secular heating: y = 90", y = 135", and y = 180" 
We now change the type of forcing by changing the parameter y. 

The case y = 90" has heating from above with the lower boundary non-conducting. 
The resulting stratification, shown in figure 8 (a) ,  looks similar to that of the y = 45" 
case although it tends to be somewhat weaker. Also, there is a small hump on the 
a = 89" curve which was not there before. Owing to the symmetry (3.37) the solution 
for S is also valid for the case of cooling from below. 

The case y = 135" has equal heating from both sides. Figure 8(b) shows the 
resulting S(Ra)  curves. Here, the stratification no longer approaches a-dependent 
constant values for large Ra but instead goes to zero for all angles of inclination. 
Also, the hump has evolved into a singularity at a = 90". However, a closer look 
at data near the singular point reveals that all physical quantities remain finite as 
a + 90". The quantity p approaches zero due to the factor cos2a whereby FO --f y 
so that the contribution of FO to 8 cancels out the stratification term S y sin a. The 
temperature gradient in the x-direction, which is S cosa, also remains finite and in 
fact goes to zero as a + 90". In the figure, the a = 89" curve has been replaced with 
one for a = 85" so as not to get too close to the singularity. 

The case y = 180" has the lowermost side heated and the topmost side non- 
conducting. Just as for the previous case, S becomes weakly singular as a + 90" and, 
just as for that case, all physical quantities remain finite. Here the temperature gradient 
in the x-direction becomes finite and non-zero which is why we have chosen to plot 
that quantity, S cos a instead of S .  As can be seen from figure 8(c), there is a parameter 
region where negative solutions exist for S .  The negative solutions are related to the 
bifurcation occurring for the horizontal case and they appear when the box is close to 
horizontal position. However, as soon as the box is not completely horizontal, there 
is a preferred flow direction - that which is associated with a positive S .  The figure 
shows that, as the box is moved away from a = 90", the negative solution branch 
becomes a twisted loop with no direct connection to the positive solution branch, the 
latter now being a smooth curve (plots with increased resolution indicate that there 
is indeed a twisted loop rather than two disconnected loops). This structure of the 
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FIGURE 9. Temperature and velocity profiles for y = 225", CI = 75", Ra = 3000 (3 solutions). 

branches seems to confirm the intuitive notion that a negative stratification cannot 
be reached naturally from rest. The negative solutions were graphically found to 
disappear at a = 66" & 0.5". As this value is approached, the twisted loop eventually 
shrinks to a point, located slightly below the centre of the a = 75" loop. For a 
porous medium with prescribed wall temperatures, Riley & Winters (1990) give a 
fuller description of a similar bifurcation structure. In the terminology used by those 
authors, what we observe is a pitchfork bifurcation at a = 90" which, as a is decreased, 
unfolds to form an isola (a closed loop). As a is decreased further the isola eventually 
vanishes at a critical angle a = 66" which, together with Ra, defines an isola formation 
point. Naturally, the complete bifurcation diagram cannot be found from a simple 
steady-state ansatz like ours, but would require further analysis - for instance using 
the methods of Riley & Winters (1990). 

5.3. Case with equal heat fluxes, topmost side cooled: y = 225" 
This case has heating at the bottom and cooling on top. Just as for y = 45" the fluxes 
are equal so that no secular heating occurs. Figure 8(d) reveals a structure of the 
solution branches which is even more complicated than that of the y = 180" case. 
To maintain a reasonable plot resolution, the plot range for Ra has been made two 
decades smaller than that of the previous figures. Symbols have been put in to help 
distinguish the different curves. 

The twisted loop structures are still present. They are here even larger than for the 
previous, y = 180", case. For high Rayleigh numbers, there is also a large number of 
disconnected loops which become increasingly thin and more densely packed as Ra 
is increased. This packing of loops causes the number of solutions to increase with 
Ra. In the figure there are at the most seven solutions and if the Rayleigh number is 
increased further even more solutions appear. 

Figure 9 shows a comparison between analytically predicted and numerically sim- 
ulated temperature and velocity profiles for the case a = 75", Ra = 3000 which gives 
one positive solution and two negative solutions, the latter being located on the right 
part of the twisted loop for a = 75". The numerical data were taken at mid-height. 
For the temperature profiles the mean value was subtracted - owing to end effects 
this mean value was not exactly zero. 
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The positive solution (S = 0.0870) has a natural flow direction, meaning a positive 
correlation between u and 8 in the cross-section. This solution could easily be 
reproduced in a numerical simulation starting from rest. 

The second solution is negative (S = -0.0891), giving almost the same temperature 
profile and a velocity profile which has about the same amplitude but the opposite 
sign. Since both S and u change sign, the convection term Ra S u cos a becomes almost 
the same as for the first solution. To obtain this solution from rest, the box was first 
pre-stratified at a = 105" until a steady state was reached. Then, the tilting angle 
a was instantaneously reduced to 75" and heating was continued until a new steady 
state had been reached. This method originates from Sen et al. (1987) who used it to 
numerically simulate steady states with unnatural stratification in a porous medium 
(those authors used the adjective 'antinatural' to describe such a stratification). Since 
stratification evolves on a very large timescale, we believe that it is possible to use 
the same method to experimentally find steady states with unnatural stratification. 
The tilting should be performed gently, avoiding strong mixing, but presumably there 
is no need to do it very quickly. It should be noted that a work by Lavine (1993) 
states that unnatural stratification is unstable (to zero-wavenumber perturbations) 
under certain circumstances which are all fulfilled by the present case. However, in 
that work no account whatsoever was taken of end-region boundary conditions. As 
a consequence, Lavine's analysis violates both (3.7) and (3.9), and is not applicable 
here. 

The third solution (S = -0.175) has a very weak flow in the unnatural direction 
and a temperature profile which is almost a straight line, indicating pure conduction. 
This solution could not be reproduced in the numerical simulations however - most 
likely it is unstable. 

Simulations with Rayleigh numbers within the left part of the twisted loop have 
also been made. Those simulations gave similar results except that on this side of the 
twist, the conduction branch is the one with the smallest absolute value of S. 

6.  Validity restrictions 
As we have seen, the stratification parameter S does not depend on the aspect 

ratio A, but only on Ra, a, and y ,  none of which contains the box length in the 
x-direction, H .  Thus, the x-derivative of the temperature is independent of the length 
of the box in the x-direction. This means that, as H is increased, we will eventually 
reach a point where the temperature differences near the ends become so large that 
the constant-property assumption and/or the Boussinesq assumption breaks down. If 
we allow a maximum temperature difference of (AT),, the following condition must 
be fulfilled: 

and similarly for the mass transfer case. This condition appears not to have been 
noted in previous work with constant-flux boundary conditions, but is nevertheless 
of importance. For instance, because of this condition we cannot use the present 
solution to treat double-glazed windows under normal circumstances. The solution 
of the mathematical problem would still be correct, but the problem itself would not 
model reality very well. 

Another restriction is that the aspect ratio must be large compared to the boundary 
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A+min(/3-’, I). (6.2) 
Also, because of our two-dimensional analysis, the dimension of the enclosure 

perpendicular to the paper in figure 1 must be much larger than the plate distance h. 
There are two different nonlinear terms in the original equations, each of which 

may cause instability for high Rayleigh numbers. We consider first the nonlinear 
term in the momentum equation and estimate, from our different explicit solutions, a 
Reynolds number based on velocity amplitude and profile thickness : 

0 (Ra’/’/Pr), for a = 0, y arbitrary 

Re - 0 ( l / P r )  , for sin a, cos a - O( l),  I I  + A2 > 0 (6.3) 1 0 (Ru(Ru - Ra,,)1/2/Pr) , for a = 90°, 11 + A2 < 0. 

Except for in the Benard limit (or near it), the Reynolds number grows slowly or 
(this may seem surprising) not at all with Ra. It seems that the term is a potential 
source of breakdown of our unicell solutions only for small P r  and/or bottom-heated 
enclosures. 

The nonlinear term in the temperature equation, on the other hand, is generally 
important for high Rayleigh numbers (except when the enclosure is almost horizontal 
and top-heated). Near the Bknard limit, we have already seen how it causes a 
gravitational instability and it would not be surprising if it causes further instabilities. 

For vertical or stably inclined cases, a somewhat brutal extension of the results 
of Hart (1971) indicates breakdown of the unicells around Ra - lo5. However, a 
numerical simulation at Ra = 1.4 x lo6 (see Appendix) did not show any tendency 
for breakdown, which may indicate that the critical Rayleigh number is significantly 
higher - although it should be noted that the simulation was made in two dimensions 
and therefore excludes any three-dimensional instabilities. 

Further analysis is definitely necessary to determine critical Rayleigh numbers and 
instability mechanisms. 

7. Some limiting cases 
For some parameter regions we have derived approximate solutions in explicit 

form. These can be used to obtain results quickly and may also give some additional 
insight. 

7.1. High Rayleigh number limit 
Guided by the numerical solution of equation (3.14) and by the result of Bark et al. 
(1992) we assume that a large Ra also implies a large /3, and simplify (3.14) accordingly 
before expanding in Ra. The method may not be formally correct, but nevertheless 
leads to expansions which agree well with the numerical solution of (3.14). For large /3 

The corresponding cross-sectional profiles have boundary layer character with 
exponential functions multiplying sines and cosines. An example is shown in the 
Appendix. For a vertical enclosure (a = 0) we get the following solution for S: 

S = 0.463Ra-‘/’ - 0.353 (1 - sin 2y) Ru-~/’ + O(Ra-’/’ ) (7.2) 
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which, except for cosmetic details, is identical to the result of Bark et al. (1992). Note 
here that the lowest-order term is independent of the heating parameter y. For cases 
without secular heating sin2y = 1 and the correction terms vanish so that the only 
error comes from expanding 11 for large B. The errors in the 11,12,Z3 expansions all 
decay exponentially with B = 0 . 5 8 3 R ~ ~ / ~  and thus quickly become negligible as Ra is 
increased. 

For the more general case of a non-zero a it is difficult to obtain expansions 
since different parameter regions must be treated differently. For inclination with the 
heaviest side down (sin a(l1 + &) > 0) we found the following expansion: 

Ra-'l4 SO cos2 a { + :So' sin2 a - 4s;) + O ( R U - ' / ~ )  (7.3) s=so+- SO ( 4 )+* 
where 

sin a. 11 + 1 2  so = ~ 

2 
S is here found to approach the 
where the second term in (7.3) 

constant value SO as Ra + co. In parameter regions 
becomes larger than the first term, the expansion 

ceases to be valid. The matter of finding expansions for different parameter-regions 
has not been pursued further. 

7.2. Low Rayleigh number limit 
For low Ra we can neglect the convection contribution in (3.5). Doing so we get the 
following solutions : 

6y2 - 5y4 - 1 
2 6  120 * 

FE = ---, Y 2  1 UE = (7.4~-d) Y - Y 3  Fo = y ,  Uo = - 
6 '  

In this limit, both the velocity field and the stratification that it causes are passive 
and do not influence the cross-sectional temperature profile. The integrals in (3.14) 
become 

which leads to the following unique solution for S :  

For very low Rayleigh numbers, S grows linearly with Ra 

(7.6) 

and is independent of a. 
For higher Ra there is also an a-dependence and, for (11 + &) negative, a singular 
point where (7.6) breaks down. For the horizontal case, this breakdown occurs exactly 
at the previously calculated bifurcation point. 

Another conclusion to draw from (7.6) is that, for low Rayleigh numbers, an 
even forcing (A2 - A , )  is much less effective than an odd forcing (A1 + A,) in setting 
up a stratification. This is in contrast to the limit Ra + oo,a = 0, for which the 
lowest order term in (7.2) has odd and even forcing of equal weight. Note that 
1 = n: + nq CC ( A 2  - A1)2  + ( A ,  + A#. 

7.3. Validity ranges for the approximate solutions 
Figure 10 shows the validity ranges for the above expansions when y = 45". Because 
the range in a has been extended to -90" c a c go", the figure also covers the case 
y = 225", as can be seen from the symmetry (3.35). 
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FIGURE 10. Validity regions of high- and low-Ra solutions, y = 45". The figure shows contours of 
the relative error when the approximate solutions are compared with a numerical solution of the 
stratification equation. 

The a = 0-high Ra model is seen to be valid for Ra greater than about 1OOO. It 
also happens to agree in a thin region of complex geometry not shown in the figure. 

The high-Ra model for non-zero a has a similar Rayleigh number restriction. Also, 
a should not be too small for the model to be valid. 

The validity of the low-Ra solution depends on the smallness of RaS cosa and we 
see from the figure that the model works even for high Ra in the special case when 
the box is almost horizontal with the heaviest side down. 

8. Summary and conclusions 
Buoyancy-driven flows in a rectangular space having an arbitrary inclination with 

respect to gravity were studied analytically. The flows studied are driven by constant, 
but not necessarily equal, fluxes applied along two opposing walls. 

Solutions valid for large times, sufficiently far from the end regions, were sought, 
assuming a uni-directional flow and a linear temperature (concentration) variation in 
the flow direction. 

In the first step, cross-sectional temperature and velocity profiles were obtained 
as functions of a stratification constant S ,  at this point unknown. To close the 
problem, the energy flux condition was applied, giving a nonlinear algebraic equation 
to solve for S .  The equation for S was solved numerically for a large set of different 
parameters - except for the special case of horizontal orientation for which a simple 
explicit solution was found. Important parameters in the system are the heating 
condition parameter y, the inclination angle a, and the Rayleigh number Ra. 

When the system is mainly top- or side-heated, the solution for S is uniquely 
determined. On the other hand, when it is mainly bottom-heated, multiple solutions 
appear when Ra is high enough and the orientation is close enough to horizontal. 
The additional solutions all have negative values of S which means an unnatural 
(top-heavy) stratification. 

A few selected cases were also solved numerically. First, the unsteady creeping flow 
equations ( P r  + 00) were solved for a case with multiple solutions in a box with the 
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aspect ratio A = 5 .  Both natural and, with some tricks, unnatural stratifications could 
be obtained. Very good agreement between analytical and numerical results shows 
that solutions of the type sought can be approached and gives a strong indication 
that the analytical expressions we have found are correct. Secondly, the full unsteady 
equations were solved for a case with high Ra and moderate P r ,  and again showed 
very good agreement, also with an analytical end-region solution which was derived 
for the case of equal fluxes and stable inclination. 

Simple explicit forms of the analytical solution were derived for the two asymptotic 
limits of high and low Rayleigh numbers. Their regions of validity were determined 
by a comparison with the exact solution. 

In closing the present study, it should be noted that even though we have found 
a family of exact solutions to the governing nonlinear partial differential equations, 
previous experience with similar flows, see for instance Hart (1971), suggests that 
for sufficiently large values of Ra these solutions will become unstable. Also, it is 
evident that in the multiple solution region some of the solutions are not stable. A 
rigorous investigation of this matter goes beyond the scope of the present study and 
is therefore left for a future project. 

We wish to thank Professor Fritz Bark at the department of Mechanics, KTH, for 
suggesting the original version of this problem and Dr Farid Alavyoon at Vattenfall 
Utveckling AB, Alvkarleby, Sweden, for letting us use his computer code. Also, 
the financial support from the Swedish National Board for Industrial and Technical 
Development (NUTEK) and the Erik Petersohn memorial foundation is gratefully 
acknowledged. 

Appendix. On the end regions 
Near the ends x = +A, the inner-region solutions are not valid. When deriving the 

inner-region solutions we have assumed that the details of the end regions are not felt 
at a long distance so that all we need to know from the end regions is the total flux 
of internal energy and mass. Since this information could be derived directly from 
the boundary conditions, there has been no need to solve the end regions and match 
them to the interior. This is a major difference from the case with prescribed wall 
temperature, in which the boundary conditions alone are not enough to obtain the 
energy flux. From the viewpoint of less idealized boundary conditions, for instance of 
the type a O / a y  = Nu(O - Oo),  the constant-flux case emerges as a particularly simple 
special case, whereas the much more researched constant-temperature case may even 
be thought of as a particularly difficult special case. 

For the vertical case, Bark et al. (1992) write down some equations for solving 
the end regions and conclude, from an analogy with the so-called Stewartson layers 
found in rotating flows, that the end regions, for high Ra and a = 0, are nonlinear 
and have a thickness which scales with ~ / R U ' / ~ .  

For high Rayleigh numbers and a tilt angle a which is not very close to 0 or 90", 
the end-region problem, oddly enough, becomes very simple. This is due to the fact 
that the stratification, which is in the direction of gravity, will have a component 
along the endwalls. Owing to this, the endwalls will be governed by essentially the 
same equations as the sidewalls! The situation is particularly simple for the case of 
equal fluxes, in which there is no flow in the interior. It is here a straightforward 
matter to derive the following boundary-layer solution, valid everywhere, except in 
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t = 8  x lo-', A8=0.05, IU~,,,,= 1 x 

FIGURE 11. Numerical simulation with Ra = 1.4 x 106,a = y = 45",A = 1,Pr = 7. ( a )  Boundary 
layers start to grow. The flow is parallel with only a weak passive convection. (b)  The boundary-layer 
growth has become inhibited by convection. Velocities are higher and the flow no longer parallel. 
(c )  A stratification develops in the interior. This damps the flow and compresses the boundary 
layers. ( d )  A steady state with a parallel flow and a linear stratification has been reached. 

the four corners: 
s cos a e = S(X cos a + y sin a) + - { e-pE(A+X) cos b E ( ~  + x) - e-bE(A-x) cos P E ( ~  - x)} 

BE 

(A 1) 
2-lf2 - S sin a 

P 
{e-B('-Y) cos ~ ( 1 -  y )  - e-b(l+Y) cos b(1+ y ) }  , + 

S cos a sin a 
U =  { e-fiE(A+X) sin P ~ ( A  + x) - e-BE(A-x) sin b E ( ~  - x)} eY 

2% 
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FIGURE 12. Temperature and velocity profiles in two perpendicular cross-sections through 
figure 1 l ( d )  compared with the analytical predictions. 

where 

(A 3) 

For inclination with the heaviest side down, we can obtain S explicitly from (7.3). 
Finally, to validate this solution and at the same time exemplify that the parallel 

flow solutions that we have studied in this paper are realizable even for moderate 
A and P r ,  we have made a full numerical simulation for the case A = 1,Pr  = 
7 , R a  = 1.4 x 106,y = 45",a = 45". This has been done using the commercial flow 
prediction code CFDS-FLOW3D. The unsteady problem was solved from rest until a 
dimensionless time of t = 0.8. Figure ll(u-d) shows how the flow develops with time 
and eventually reaches a steady state with linear stratification and boundary layers 
with parallel flow. Figure 12, finally, shows a comparison between the analytical 
solution (A 1) and the numerical result for t = 0.8. A difference can only be seen in 
the velocity profiles near the middle. Presumably, even that small difference would 
vanish as t + co. 

BE = ( R a S  sin2 a = ( RaS;os2 a )  'I4 

4 
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